
Functional Size Measurement in Agile

A Thought Experiment with Measuring Functional Size in Agile Development

Dr. Thomas Fehlmann

Euro Project Office AG

8032 Zurich, Switzerland

E-mail: thomas.fehlmann@e-p-o.com

Eberhard Kranich

Euro Project Office

47051 Duisburg, Germany

E-mail: eberhard.kranich@e-p-o.com

Abstract — In Agile Software Development, story points indicate

the effort needed to implement a user story up to the Definition

of Done. Hence, story points can be applied to track the progress

of a software product under development. A major drawback of

their use is that they do not allow predicting the number of

sprints needed to create or modify a software product, not even

for a minimum viable product. A more promising way to meas-

ure sprints is to use functional size counts determined by IFPUG

or COSMIC. Both methods yield useful results when correctly

interpreted. However, the functional size of the product is not

simply determined by the total functionality implemented in

sprints. Agile teams often touch the same functionality more

than once; adding new requirements to existing functionality

must be handled adequately, and some already implemented

functionality is disregarded. Moreover, refactoring, removing

technical debt and software testing adds effort, measured in

story points, but adds no functionality.

Keywords—Agile Software Development; Software Metrics;

Software Sizing; Sprint Performance; Product Cost Management;

Thought Experiment; Gedankenexperiment.

I. INTRODUCTION

A Software Metric is a measure of some property of a
piece of a software artifact or its specifications. A measure re-
lies on a measurement method that fulfills the definition of the
VIM and the GUM:

• The VIM: ISO/IEC Guide 99:2007, 2007. Interna-
tional Vocabulary of Metrology – Basic and general
concepts and associated terms (VIM) [1];

• The GUM: ISO/IEC CD Guide 98-3, 2015. Evaluation
of measurement data – Part 3: Guide to Uncertainty in
Measurement (GUM) [2].

ISO 19761 COSMIC [3] defines a software metric; ISO
20926 IFPUG [4] a size count. Both methods are useful for
the purpose of measuring sprint performance in Agile.

A. Combining Measurements

One can add, subtract, compare, and multiply measure-
ments for instance to combine part measurements into a meas-
urement of the total. Sometimes, for instance when measuring
a distance between two places, trigonometry is needed to com-
bine two section measurements into one measure for the
whole distance because of hills, slopes and angles.

Counting function points to characterize functional size, or
software development effort, or something, are not necessarily
metrics. Counting points does not measure anything else ex-
cept points unless the points mark some unit on a measure-
ment scale.

B. Measurement Methods

ISO 19761 COSMIC [5] measures size by counting data
movements. Two measured applications can be combined into
one by simply adding their counts. This works because the
system boundary does not impact the count; contrary to
IFPUG. ISO 20926 IFPUG [6] has five elementary units
whose counting value depends on the boundary, because of
the File Types Referenced (FTR). Adding two applications
yields questions: what to do if the Internal Logical File (ILF)
of one application becomes an External Interface File (EIF)
of the other? What if a new requirement adds some Data Ele-
ment Type (DET) to an elementary data unit? Does it affect all
previous counts? There does not seem to be an easy way to
combine two IFPUG counts and get the correct count for the
combined application. IFPUG does not comply with the VIM
and the GUM, whereas COSMIC does.

However, compliance is needed when counting each sprint
and trying to get a valid size estimate of the total product by
the sum. Each sprint creates a mini application that – theoret-
ically – should already provide value to the customer and pro-
vide some functionality. The next sprint adds new functional-
ity, changes existing functionality, and even might remove
some already obsolete functionality. A set of stated require-
ments often varies because during agile software development
some requirements can be removed from the backlog, whereas
new requirements are added. In addition, modified require-
ments remain in the backlog.

In COSMIC, these activities can be modeled, basically by
distinguishing data movements created anew from those
amended or enhanced. The total of data movements, new de-
veloped, enhanced, or re-developed, describes the size of the
product at any given moment in time – i.e., at the beginning
of a sprint – while the performance of a sprint should be meas-
ured by counting all data movements touched, be it the total
of newly created, enhanced, re-developed, or deleted. This im-
plies that data movements count every time they are touched
for the sprint, but only once for size. Since there are usually
different product delivery rates for new development and

enhancement [7], one can compare such metrics with perfor-
mance data from other software development undertakings.

With IFPUG, modeling the elementary data functions and
transactions also allow sizing the product, or the sprint. How-
ever, these sizes do not add easily but still approximate per-
formance of a sprint.

For detailed information about these measurement meth-
ods, consult the manuals (COSMIC [3] and IFPUG [4]) and
the ISO standards (COSMIC [5] and IFPUG [6]). Fehlmann
[8, p. 130ff] provides a comparison for using these methods.
When to use which method depends from the application or
business domain. For transactional systems, use IFPUG; for
Internet of Things (IoT), communication, and service archi-
tectures, developers prefer COSMIC; compare with Fehlmann
[9].

C. Research Questions

While the term ‘project’ has disappeared from Agile [10]
and DevOps [11], the old lore about projects regarding qual-
ity, effort and time constraints remains valid. The same laws
hold for agile sprints. Story Points [12] are widely in use to
predict the content of the next sprint, based on a team’s effort
prediction. There is no distinction between Functional User
Requirements (FUR) and Non-functional Requirements
(NFR) [13]. Consequently, story points are not suitable for
benchmarking, even if some sort of standard story points are
defined for comparison between different teams.

The question is whether functional sizing conformant to
ISO/IEC 14143 [14] provides value to agile teams. Some de-
velopers will deny that, with the argument that function point
sizing traditionally has been used to predict the size of the fi-
nal product. But agile development works without a known
finished product, therefore no such size can be determined.

Nevertheless, there is a need to assess and predict cost of
development, operation, and maintenance for software. Tradi-
tionally, measuring functional size and benchmarking has
been used for predicting operational and maintenance cost [7].
Why should this not be possible for agile sprints?

To make functional size measurement useful for agile, we
need to answer the following research questions, for both
COSMIC and IFPUG-based size measurements:

• What exactly to measure?

• When to measure?

• How exactly to measure?

• How does the final product relate to sprints?

• How does functional size relate to story points?

• How many sprints are needed to build a Minimum Vi-
able Product (MVP)? [11]

To answer these questions, we conduct a Gedankenexper-
iment addressing mobile app development, closely based on
actual experiences.

We introduce the two methods for measuring functional
size, then describe the approach and the sprints measured, then
do a Retrospective and finally present the findings.

II. THE MEASUREMENT APPROACH

Per sprint we execute two distinct functional size measure-
ments in parallel:

• Functional size of each sprint, corresponding to work
performed per sprint, and therefore to the development
team performance;

• Total product size, corresponding to the total value of
work performed that contribute to the product in use.

The total sum of sizes of all sprints is not equal to the total
product size, else it would not be agile development.

This is due to new requirements that change functionality
that already had been implemented. Also, some functionality
might initially be implemented in a provisional way. Still,
such work had been performed in the sprints, and it would not
be correct to discard such work as “non-productive”. Some-
times, the initial functionality was necessary to uncover the
correct requirements; sometimes, such functionality was a
stub that made the piece of software valuable to the user in an
initial, provisional state. Examples include automated data
connectivity that initially was substituted by some manual in-
put facility.

A. Data Movement Maps

For measurement, we use Data Movement Maps and
Transaction Maps. From data movement maps, a COSMIC
count can be obtained automatically; from a transaction map,
an IFPUG count. The automated counts are reasonably good
approximations, enough for the purpose of monitoring agile
sprints.

3 Entry (E) + 4 eXit (X) + 3 Read (R) + 1 Write (W) = 11 CFP

Device
Functional

Processes
Persistent

Data Store
Other Application

1.// Start Data

Combine

2.// Read Data from Store

3.// Start Other Application

4.// Get Response from Other Application

5.// Write Data into Store

6.// Get Result Data

7.// List Entries

8.// Show Entries

9.// Delete Entry

Delete

10.// Confirm Deletion

11.// Confirm Deletion

Fig. 1. Data Movement Map with Four Objects of Interest and two Triggers

How to create these maps and its automatic counting, con-
sult Fehlmann [8, p. 130 & 160]. We distinguish four types of
Objects of Interest:

• Functional Processes: Objects that perform functional
processes in the COSMIC sense. One object of interest
can perform more than one functional process; thus, it
represents for instance one Virtual Machine (VM), or
Electronic Control Unit (ECU) performing different
calculations rather than a single COSMIC functional
process;

• Persistent Store: Objects that persistently hold data.
Contrary to the COSMIC definition, they can provide
data services to several functional processes;

• Devices: A device can be a system user or anything
providing or consuming data;

• Other Applications: other applications use functional
processes the same way as devices do, however, they
typically represent other software or systems that can
be modeled the same way using data movement maps.

As shown in Fig. 1, Triggers indicate the starting data
movement of one or more COSMIC functional processes.
Thus, one object accommodating several functional processes
can have multiple triggers. The automatically calculated total
count appears on the top.

Data Movements always move a Data Group, which can
be thought as a data record. Its uniqueness is indicated by
color-filled trapezes. A second move of the same data group
between the same objects within a COSMIC functional pro-
cess lets it blank, because it does not add any additional func-
tionality. It is not counted for functional size according the
COSMIC method [3].

Data movement maps can automatically be counted for
ISO/IEC 19761 COSMIC [3] functional size. Moving the
same data group twice between the same objects of interest is
counted as one function point only. On the other hand, one can
combine as many data movement maps as possible and count
the same total of data movements, notwithstanding how the
boundaries are drawn.

B. Transaction Maps

The IFPUG model [4] defines a count for functional size
by counting model elements that are conceptually familiar to
traditional mainframe software: Elementary Data Functions
and Elementary Transactions.

The following five functional components of the software
evaluate for the count according to the ISO/IEC 20926 IFPUG
rules based on the user requirements:

• Internal Logical File (ILF): A user identifiable group
of logically related data that resides entirely within the
applications boundary and is maintained through Ex-
ternal Inputs.

• External Interface File (EIF): A user recognizable
group of logically related data or control information
referenced by the application being measured; how-
ever, maintained within the boundary of another appli-
cation.

• External Input (EI): An elementary process in which
data crosses the boundary from outside to inside. The
data can be either control information or business in-
formation. If the data is business information, it main-
tains one or more internal logical files. If the data is
control, it does not have to update an internal logical
file.

• External Output (EO): An elementary process in which
derived data passes across the boundary from inside to
outside. The data creates reports or output files sent to
other applications. These reports and files originate

from one or more internal logical files and external in-
terface file.

• External Inquiry (EQ): An elementary process with
both input and output components that result in data
retrieval from one or more internal logical files and ex-
ternal interface files. This information crosses the ap-
plication boundary. The input process does not update
any Internal Logical Files and the output side does not
contain derived data.

For counting, these five elementary types of data functions
or transaction are categorized as either low, medium, or high
complexity. This yields its functional size. The complexity de-
pends on the Data Element Type (DET) handled by each ele-
ment, and the number of File Type Referenced (FTR). Conse-
quently, ISO/IEC 20926 IFPUG defines a count with jumps,
not a metric.

Adding data elements can let the complexity assessment
jump from one level into another. Moreover, replacing func-
tionality is sometimes not reflected in the count.

For counting model elements in ISO/IEC 20926, it is nec-
essary to know the boundary for the complete system. The
reason is that the total number of FTR – represented as con-
nectors in data transaction maps – impact the size of the trans-
action-type model elements. Without knowing the whole sys-
tem, parts cannot be counted, if following the rules of the
IFPUG manual [4] exactly.

As already mentioned, the IFPUG count does not conform
to the VIM and the GUM. This makes the IFPUG counting
method unattractive both for agile software development that
needs to count the functional size of sprints, and even more
for test metrics. Any such metric relies on the VIM and the
GUM when comparing size of sprints, adding sprints to the
whole product, or when sizing test cases.

T001 T004

T002

T003

D002 D001

BoundaryIFP=26

ILF

5 / 1

Persistent Data Store

EIF

5 / 1

Other Application

EO

10 / 2

Get Result Data

EI

5 / 1

Enter Start Data

EQ

2 / 1

Show Entries

EI

2 / 1

Delete Entry

Fig. 2. Transaction Map for the Piece of Software Already Shown in Fig. 1

Transaction Maps, as shown in Fig. 2, are a way to visual-
ize the IFPUG model for a software system. Depending upon
the architecture, more than one transaction map is needed for
a modern architecture software system. Then, typically, some

ILF has its data managed by one transaction map while others
access the same elementary data elements as an EIF. Because
of the boundary rules in IFPUG counting rules [4], this leads
to double counting. The automatically calculated total count
is shown at the bottom.

Both, data movement maps and transaction maps are well
suited for use with agile teams, for visualizing which elements
of software are touched in each sprint. The model elements
can be used for communicating work done in sprints, at the
same time providing its functional size. Business people usu-
ally prefer the transaction maps; developers the data move-
ment maps.

III. AN APP DEVELOPMENT EXAMPLE

Software development typically starts with a vision, often
described by an initial backlog of user stories – sometimes,
rather Epics; that are functional user requirements in a granu-
larity way above what is needed for implementation and cod-
ing. Usually, epics evolve into user stories during initial
sprints. A vision is not what will be implemented at some later
time – it is the idea of the vision that it remains a vision but
changes while requirements get better understood and change
as well. Comparing the initial vision with the product released
later, after enough sprints, is nevertheless interesting and help-
ful for product owners and requirements engineers alike.

A. The Vision

The vision consisted of eight rather simple user stories,
based around the introduction of barcodes allowing for scan-
ning paper bills by an ordinary smartphone, creating transac-
tion that a bank can execute.

TABLE 1. INITIAL BACKLOG USER STORIES FOR THE ANDROID

MOBILE APP

Label As

a…

I want

to…

Such that… So that…

Login App

User

be sure to

access my

Giro

Account

By using Fingerprint

for identification and

TAN for authentica-

tion

I can be

confident for

my privacy

Scan QR

Code

App

User

scan my

bills

typing in IBAN and

reference information

is no longer necessary

paying bills is

with one click

Use Giro

Account

App

User

use my

Giro

Account

I can access banking

services with my

Smartphone

to pay bills

Create

Transac-

tions

App

User

create

transac-

tions

it's simple to pay bills

Edit

Transac-

tions

App

User

view &

edit trans-

actions

I'm informed about

what I'll pay

account status

remains under

control

Schedule

Execu-

tion

App

User

select the

date of

execution

I can plan for my ac-

count balance

account status

remains under

control

Account

Status

App

User

review

account

status

all pending transac-

tions are considered

account status

remains under

control

Refill App

User

link to a

savings

account

I can refill my Giro

Account

I'm able to pay

my bills

In real life, there are a lot more functional users involved
– from Compliance Officer to the bank’s customer care de-
partment – providing additional user stories such that a real
set contains rather a hundred stories instead of eight.

Counting the vision for the Android Mobile App with the
eight user stories shown in TABLE 1 only yields 188 IFP; the
COSMIC count is 105 CFP. We always start with a vision;
thus, product size is approximately known. Sizing the vision
allows identifying layers, data functions by IFPUG, respec-
tively objects of interest when using COSMIC.

B. The Architecture

The example shown here is invented; however, it follows
as closely as possible real experiences made in practicing size
counts in agile development.

The architecture is standard. The smartphone never ac-
cesses banking data directly but always uses a middleware –
here called App & Web Server – to connect to real banking
data. Most of the architectural components already exist but
need some enhancements for the new Mobile App.

For sizing, the pre-existing parts are tagged as “enhance-
ments”, compared with the “new development” needed for the
additional features. Product size is the sum of both.

We have functional users for all five application systems;
thus, they add to functional size. The functional users are rep-
resented by the broad arrows in Fig. 3. TAN, IAM, and CMS
services are already existing and will not need any enhance-
ments. The App & Web Server also is standard, but many
functions require a server part, for accessing data or storing
data that does not belong to the relatively unsafe smartphone.
For instance, transactions and access keys are never stored on
a smartphone.

S
M

S

Android Mobile App

App & Web Server

TAN

R
E

S
T

G
en

er
at

e

IAM

Id
en

tif
ic

at
io

n
&

 A
ut

he
nt

ic
at

io
n

A
ut

he
nt

ic
at

io
n

CMS

C
on

te
nt

Fig. 3. Architecture Overview

C. The Sprints

Sprint 01 – Allegro. We assume, the development plat-
form for Android was already installed, and thus we do not
need an extra sprint to set it up.

Also, the team is experienced and used in cooperation. Ac-
cessing a camera on a smartphone is nothing new for nobody.
Therefore, the team started without hesitation. The team se-
lected the “View Giro Account Status” user story as its top
priority. This user story had been badly implemented before

and drawn much criticism. This priority decision allows busi-
ness to see valuable results within two weeks’ time.

In the first sprint, the View Account Status user story was
selected from backlog – actually, from the vision. Story Point
(StP) estimations are in parenthesis:

• As App User, I want to review my Giro Account status
such that I can plan for my account balance to keep
account status under control (8 StP).

The Product Owner discovered two new user stories, not
part of the initial vision, now added to Backlog. The team con-
sidered them uttermost important:

• As App User, I want to include my credit cards in the
Giro Account statement such that I see the amount nec-
essary to pay my monthly statements, controlling Giro
balance (8 StP).

• As App User, I want to connect with my credit card
accounts such that I can use the same Giro for credit
card payments, keeping account status under control (8
StP).

These two new user stories let the product size grow. Ini-
tially, the vision, or initial backlog, can be used to estimate the
final product size, but the product size growths with each
sprint finally expected when new user stories are discovered
and added to the backlog. Therefore, it is safer to measure the
real product size, as implemented after each sprint. In our
case, the need for linking credit cards affects middleware as
well; thus, the App & Web Server also starts growing with the
new Android Mobile App product.

Also, the Login procedure was selected for its technical
importance. This functionality was reused from a previous
Mobile App and thus is not a new development:

• As App User, I want to be sure to access my Giro Ac-
count by using fingerprint for identification and TAN
for authentication such that I can be confident for my
privacy (3 StP).

Involving credit cards from foreign banks has become pos-
sible thanks to a new standard ISO 20022, that has been
adopted throughout the EU, defining account access interfaces
between different banks [15]. This new feature seems to in-
crease customers’ acceptance for the new Android Mobile
App.

Sprint 02 – Andante. This sprint implements the main
functionality, namely scanning a bill and creating a transac-
tion that the Backoffice systems can execute:

• As App User, I want to scan bills received with my
smartphone and pay without typing any IBAN or other
reference information, with only one click (13 StP).

• As App User, I expect that scanning creates a transac-
tion scheduled for next day to pay my bills (8 StP).

• As App User, I want to use my Giro Account, without
a complicated process, to pay my bills (3 StP).

Note that scanning and creating a transaction is only one
elementary transaction is IFPUG. We also want a link to Sav-
ings Accounts:

• As App User, I want to link my Giro Account to some
other Savings Account such that I can refill my Giro
for paying my bills with my smartphone (5 StP).

As before, the App & Web Server is also affected and
needs some additional functionality. We link the Giro account
to some savings accounts in case normal income, e.g., regular
salary payments, are not enough to keep the balance in the
positive.

Avoiding double counting, we attach a “Not Counted” la-
bel to Session Key and Giro Account that was already created
in Sprint 01. For IFPUG, the EIF already initiated such as
Identity Access Management and Mobile Content are also not
counted, since not enhanced.

Sprint 03 – Scherzo. Managing and scheduling transac-
tions means that we somewhat refine two user stories that al-
ready were part of the vision:

• As App User, I want to view, edit and delete transac-
tions that I scanned before execution, such that I am
informed about what I pay, and my account balance
remains under control (8 StP).

• As App User, I want to see pending transactions such
that I know what will happen to my account balance (5
StP).

• As App User, I want to reschedule transactions such
that I can plan for my account balance and my Giro
account is not overdrawn (3 StP).

Now we listen to the voice of the Private Banking Coun-
selor and add yet two more user stories:

• As Counselor (or as Compliance Office), I want to be
sure that all transactions are traceable such that any
misuse or erroneous action can be reversed (5 StP).

• As Counselor, I need the possibility to view the Trans-
action Log (8 StP).

Thus, the log file becomes a Transaction Log and will get
enhanced functionality that allows those two functional users
to help their customers, respective meet legal requirements,
e.g., when scanning transactions for tax fraud.

The transaction log is not something that the user needs,
or wishes, but is useful when the bank needs blocking and re-
opening transactions. Since the App user needs such function-
ality, and since he or she also wants to see transaction history,
this is a FUR that must be counted. The main reason for trac-
ing transaction is compliance. However, we also listened to
the voice of the Private Banking Counselor who wants to be
able to support its customers effectively.

The need to view the transaction log is logically a part of
middleware, the App & Web Server, although it might not ex-
actly belong there, and most probably will be implemented
somewhere else.

Sprint 04 – Marche Funèbre. The Security Officer found
out that Android posts all images on some Cloud Service as
soon as connected to some WLAN. However, this service can
be switched off.

The ability to switching off needs additional functionality
on the smartphone. It requires saving the user settings that are
valid outside of the Mobile Payment App. Therefore, there is
another new user story:

• As App User, I want to make sure that my camera
scans a bill only for my Mobile App such that nobody
can trace my payments, and things keep private (13
StP).

Instantaneous posting of pictures taken with a smartphone
to Instagram, Twitter or some cloud service is a standard fea-
ture; however, it is not straightforward to consider it. It is not
a bug; it is a new feature.

Obviously, a workaround could be to access the camera
directly, exclusively. Using the preinstalled camera app in-
creases portability but carries the risk that usually such code
is not open. Hidden backdoors might persist even if settings
are switched to “No share”. For security reasons, the camera
settings are kept persistent.

The transaction, or data movement, already counted in
Sprint 02 therefore gets changed and replaced by some newly
developed software for scanning bills. This sprint provides
work on the Android Mobile App only. Because access to in-
ternal smartphone camera settings is rather tricky – one must
hack around internal privacy protection – total amount of
added or enhanced functionality remains low.

Moreover, there is a “Refill Giro” user story implemented
in Sprint 04 that complements the link to some savings ac-
counts, and alert functionality:

• As App User, I want to refill my Giro account in case
normal funding is late or insufficient, such that I can
pay my bills that are scheduled for payment (8 StP).

• As App User, I want an alert in case of missing bal-
ance, such that I can pay my scheduled bills (5 StP).

Sprint 05 – Intermezzo. The code quality static tester tool
in use by our team, is not very happy with the amount of Tech-
nical Debt that already has piled up. Source code needs refac-
toring. This gives rise to a new user story:

• As Developer, I want to make sure that my software is
bug free, maintainable, and contains minimal technical
debt (13 StP, non-functional).

• Another user story was added to the sprint backlog:

• As Business Owner, I want to make sure that our Mo-
bile Payment App runs on all major smartphone brands
and software versions in use (13 StP, non-functional; a
suitable test service is commercially available).

This requires software tests:
o Static Tests and fixing of bad code.
o Dynamic compatibility tests with as many popular

smartphone brands as possible.
The Intermezzo Sprint does not add or enhance any func-

tionality neither to the Android Mobile App nor to any other
applications. Both user stories are nonfunctional.

Sprint 06 – Menuetto. Overall progress is good, thus new
ideas find fertile ground with the following new user stories:

• As App User, I like to see my spending history graph-
ically, such that I can distinguish what I spent by pay-
ments and credit card, for managing liquidity (13 StP).

• As App User, I want to set the time slot for the graph-
ical spending history, such that I see trends, and I can
determine when to refill my Giro Account (3 StP).

A similar new user story also seems important enough for
implementation:

• As App User, I like to see spending statistics, such that
I can distinguish how much I spent for what, to plan
my future spending (8 StP).

Sprint 06 – Menuetto is meant to add better appealing
functionality to the Android Mobile App. Graphics are always
better than just numbers; the Android library used allows to
create graphs with relatively little effort. Thus, the team as-
signed high priority to these user stories.

This results in rather few new functionality, but some sig-
nificant enhancements of already implemented functionality.

Sprint 07 – Finale. For the final sprint, we have only one
additional user story added, that makes work done previously
for the graphical representations partially obsolete, inducing
enhancements to the already finished functionality providing
graphic settings.

A little late maybe, our product owner might have talked
to some user representative and found out that graphics are
welcome, but they should be available on the web and – obvi-
ously – look the same.

Thus, we must move the graphical settings data function
from the smartphone back to the server. This has the addi-
tional advantage that users retrieve their settings even after
losing or exchanging their smartphone but does not impact the
Mobile App. The new functional user story reads as:

• As App User, I like to share my spending history
graphics with other platforms, by seeing the same
graphics in Web Banking (8 StP).

The necessary finishing touches are represented again as
non-functional user stories:

• As a developer, I want everything well documented
(13 StP, non-functional).

• As product owner, I want automated tests before re-
lease (8 StP, non-functional).

This user story makes the previous solution (keeping
graphical settings on the phones) obsolete.

IV. RETROSPECTIVE

In retrospective, process metrics are analyzed.

A. Product Size Growth

New Dev Enhanced Re-Dev Total New Dev Enhanced Re-Dev Total

Vision 151 IFP 37 IFP 188 IFP 129 IFP 129 IFP

Sprint 01 27 IFP 27 IFP 129 IFP 129 IFP

Sprint 02 48 IFP 50 IFP 98 IFP 23 IFP 129 IFP 152 IFP

Sprint 03 111 IFP 60 IFP 171 IFP 23 IFP 129 IFP 152 IFP

Sprint 04 153 IFP 65 IFP 218 IFP 36 IFP 129 IFP 165 IFP

Sprint 05 167 IFP 68 IFP 6 IFP 241 IFP 36 IFP 129 IFP 165 IFP

Sprint 06 167 IFP 68 IFP 6 IFP 241 IFP 36 IFP 129 IFP 165 IFP

Sprint 07 199 IFP 68 IFP 6 IFP 273 IFP 36 IFP 129 IFP 165 IFP

Final 174 IFP 86 IFP 13 IFP 273 IFP 52 IFP 129 IFP 181 IFP

Product Size at Start of Sprint according IFPUG

Android Mobile App App & Web Server

100 IFP

200 IFP

300 IFP

400 IFP

500 IFP

Sprint 01 Sprint 02 Sprint 03 Sprint 04 Sprint 05 Sprint 06 Sprint 07 Final

Product Size Growth

App & Web Server Android Mobile App

Fig. 4. Application Growth according IFPUG

New Dev Enhanced Re-Dev Total New Dev Enhanced Re-Dev Total

Vision 86 CFP 19 CFP 105 CFP 32 CFP 32 CFP

Sprint 01 32 CFP 32 CFP

Sprint 02 20 CFP 19 CFP 39 CFP 8 CFP 32 CFP 40 CFP

Sprint 03 53 CFP 22 CFP 75 CFP 8 CFP 32 CFP 40 CFP

Sprint 04 93 CFP 22 CFP 115 CFP 17 CFP 32 CFP 49 CFP

Sprint 05 110 CFP 24 CFP 1 CFP 135 CFP 17 CFP 32 CFP 49 CFP

Sprint 06 110 CFP 24 CFP 1 CFP 135 CFP 17 CFP 32 CFP 49 CFP

Sprint 07 132 CFP 24 CFP 1 CFP 157 CFP 17 CFP 32 CFP 49 CFP

Final 120 CFP 35 CFP 3 CFP 158 CFP 25 CFP 32 CFP 57 CFP

Product Size at Start of Sprint according COSMIC

Android Mobile App App & Web Server

50 CFP

100 CFP

150 CFP

200 CFP

250 CFP

Sprint 01 Sprint 02 Sprint 03 Sprint 04 Sprint 05 Sprint 06 Sprint 07 Final

Product Size Growth

App & Web Server Android Mobile App

Fig. 5. Application Growth according COSMIC

In COSMIC (Fig. 5), we have less “Enhanced” function-
ality compared with IFPUG (Fig. 4), because a data movement
might be newly developed even if connecting two already ex-
isting objects. Therefore, we found no “Enhanced” data move-
ments within the Android Mobile App.

Note that when newly developed functions become en-
hanced, because of new requirements, they change the status
from “New Development” to “Enhanced” for the product size.
In fact, it means that these functions have been changed.

B. Sprint Performance

The IFPUG sprint sizes sum up to something higher than
product size; this is an indication that the vision has been im-
plemented in full. In the Android Mobile App, there is some
deleted functionality in Sprint 04 and 07 that does not add to
size but to sprint performance. The App & Web Server has no
re-developed functionality.

New Dev Enhanced Re-Dev Total New Dev Enhanced Re-Dev Total

Sprint 01 55 IFP 43 IFP 98 IFP 23 IFP 28 IFP 51 IFP

Sprint 02 51 IFP 39 IFP 90 IFP

Sprint 03 52 IFP 24 IFP 76 IFP 13 IFP 42 IFP 55 IFP

Sprint 04 29 IFP 13 IFP 6 IFP 48 IFP

Sprint 05

Sprint 06 32 IFP 32 IFP

Sprint 07 7 IFP 18 IFP 7 IFP 32 IFP 16 IFP 16 IFP

Total 226 IFP 137 IFP 13 IFP 376 IFP 52 IFP 70 IFP 122 IFP

Android Mobile App App & Web Server

Sprints according IFPUG

Sprint 01 Sprint 02 Sprint 05 Sprint 06 Sprint 07

98 IFP 90 IFP 32 IFP 32 IFP

50 IFP

100 IFP

150 IFP

Sprint 01 Sprint 02 Sprint 03 Sprint 04 Sprint 05 Sprint 06 Sprint 07

Sprint Performance in IFPUG

App & Web Server Android Mobile App

Fig. 6. Sprint Performance measured with IFPUG

Sprint 05 does not add any functionality, for both meas-
urement methods.

New Dev Enhanced Re-Dev Total New Dev Enhanced Re-Dev Total

Sprint 01 20 CFP 19 CFP 39 CFP 8 CFP 8 CFP

Sprint 02 36 CFP 9 CFP 45 CFP

Sprint 03 39 CFP 9 CFP 48 CFP 9 CFP 4 CFP 13 CFP

Sprint 04 21 CFP 5 CFP 1 CFP 27 CFP

Sprint 05

Sprint 06 22 CFP 22 CFP

Sprint 07 2 CFP 11 CFP 2 CFP 15 CFP 8 CFP 8 CFP

Total 140 CFP 53 CFP 3 CFP 196 CFP 25 CFP 4 CFP 29 CFP

Android Mobile App App & Web Server

Sprints according COSMIC

20 CFP

40 CFP

60 CFP

80 CFP

Sprint 01 Sprint 02 Sprint 03 Sprint 04 Sprint 05 Sprint 06 Sprint 07

Sprint Performance in COSMIC

App & Web Server Android Mobile App

Fig. 7. Sprint Performance measured with COSMIC

Sprint 03 and 04 needed enhancements in existing func-
tionality that was impacted by new, or changed, user require-
ments. Performance covers both new development and en-
hancements since both types of work require effort. The incre-
ment of product size, in contrary, as shown in Fig. 4 and Fig.
5, deteriorates even more from sprint to sprint.

The team estimated story points as shown in Fig. 8, ac-
cording to its own habits and rules. The break-in in perfor-
mance with Sprints 05 and 07 does not appear in Story Points;
the team had a lot to do but did not add new functionality.

24
Total

Sprint 01 8 StP 8 StP 8 StP 3 StP 27 StP

Sprint 02 13 StP 8 StP 3 StP 5 StP 29 StP

Sprint 03 8 StP 5 StP 3 StP 5 StP 8 StP 29 StP

Sprint 04 13 StP 8 StP 5 StP 26 StP

Sprint 05 13 StP 13 StP 26 StP

Sprint 06 13 StP 5 StP 8 StP 26 StP

Sprint 07 13 StP 8 StP 8 StP 29 StP

Final 81 StP 55 StP 35 StP 13 StP 8 StP 192 StP

User Stories

Story Points

10 StP

20 StP

30 StP

Sprint
01

Sprint
02

Sprint
03

Sprint
04

Sprint
05

Sprint
06

Sprint
07

Sprint Productivity in Story Points

User Stories

Fig. 8. Story Point Estimates by the Development Team

(non-comparable with other teams)

The team estimated a total of 192 StP for the final 24
functional and non-functional user stories, grown from the
original eight user stories for the initial vision (Table 1).

Total Dev #Sprints Length Hours/Day Team Size PDR

498 IFP 7 10 Days 7.2 h 6.8 7 h/IFP

Productivity in IFPUG FP

Total Dev #Sprints Length Hours/Day Team Size PDR

225 CFP 7 10 Days 7.2 h 6.8 15 h/CFP

Productivity in COSMIC FP

Fig. 9. Overall Productivity, in IFPUG and COSMIC

This yields a Productivity Delivery Rate (PDR) of
7 h/IFP, respectively 15 h/CFP. The same calculation can
also be done for story points and yields a productivity number.

Total StP #Sprints Length Hours/Day Team Size

192 StP 7 10 Days 7.2 h 6.8 18 h/StP

Delivery

Rate

Productivity in StP

Fig. 10. Overall Productivity, expressed in story points

Agile methodology uses velocity – the number of story
points that the team can implement in one sprint – for predict-
ing duration and cost of product development. The respective
velocity in our Gedankenexperiment amounts to 18 h/StP.
However, velocity does not allow to predict what functionality
can be provided at the cost of those sprints.

C. Cost of Agile Software Development

As explained above (section A), cost estimates depend on
the sprint productivity; however, it is difficult to predict how
many new requirements will be detected during the agile
sprints. Nor does the number of sprints planned predict the
amount of functionality, and thus size, of the resulting prod-
uct.

Nevertheless, such predictions are feasible using Quality
Function Deployment (QFD) [16] by analyzing how well the
vision meets the needs of the customer or user [17].

D. Findings

From Fig. 6 and Fig. 7 it becomes apparent that functional
size growth diminishes when looking at later sprints. Intui-
tively this is clear, because tests, refactoring and documenta-
tion become more and more dominant later in the product life
cycle. The relation between effort and product functional size
increment deteriorates over time. The amount of this deterio-
ration is paramount for predicting cost of product develop-
ment.

Sprint performance in terms of functional size deteriorates
from the start value to about one third. Product size increment
follows a logarithmic curve whose parameters should be
highly interesting to cost estimators. Surprisingly, not much is
published in the scientific literature about this curve. It looks
like this curve describes some functional growth, without an
apparent limit – it is not a saturation curve – even while the
effort, expressed in story points, remains stable and constant
(Fig. 8). The implemented FUR seem to generate additional
FUR like fractals.

This “fractal growth curve” resulting from the shift from
FUR to NFR has been observed in all agile development un-
dertakings that the authors have monitored in the last five
years. The reasons could be: Teams shift from the focus on
developing new functionality to testing, refactoring, and

preparing deployment. New, more detailed FUR are uncov-
ered in this process. This seems characteristic for the product
under development, and is supported by DevOps. The form of
this “fractal growth curve” depend on the amount of shift-lest,
and on the details of the DevOps approach. For instance, with
Autonomous Real-time Testing (ART) [18], testing becomes
an ongoing activity. Then, even while effort, and thus cost, is
evenly distributed over the full product life cycle, functional
growth is not.

Smoothing the curve, the mathematical representation of
this curve suggests a logarithm; that would suit to “fractal”.
However, “fractal” suggests relatively simple growth rules de-
serving high interest. This needs further investigation. It
should become the target when benchmarking performance of
software product development methods, and teams.

 Our thriving experiment opens more questions than it an-
swers. Nevertheless, for a few research questions we have an-
swers, thanks to our Gedankenexperiment:

• Management should monitor the characteristics of the
fractal growth curve.

• We know what to measure when, and how. We need
both functional size and story points.

• We prefer the subjective team measure captured by
story points over effort measurements by counting
hours. Story points better reflect the difficulties en-
countered and mastered by the team.

• Measuring agile development must address each
sprint, not just the final product, an initial vision (or
backlog), or the MVP. The reward for these additional
measurements is apparent.

• Comparing the size of the product with the effort spent
in sprints indicates how much work was spent in get-
ting the requirements right, implementing NFR, refac-
toring, removing technical debt and other quality im-
provements.

• While the product can be compared with the vision in
terms of size, the implemented features might differ
quite a bit. Also, the MVP does not remain stable and
undergoes change.

• The question whether IFPUG or COSMIC shall be
used for measuring agile depends on the product do-
main; both methods work for managing development
despite the lack of VIM/GUM compliance of IFPUG.

It should be restated that this Gedankenexperiment reflects
the practical experiences made when monitoring agile soft-
ware development, in various industries, over five years now.
Also, the tools we use for counting are adapted to agile devel-
opment, avoiding double counting for sprints and the product.
Thus, the effort for measuring sprints is equal to the effort for
measuring the final product; only the work is in sprints rather
than monolithic.

V. CONCLUSION

Using story points has the disadvantage that the team must
already be available and ready to assign story points to user
stories. In contrary, using functional size measurements ena-
bles product managers to gauge their vision also in view of
product improvement plans and schedules. This works better

because the PDRs of Fig. 9 already include the characteristics
of agile development. These values can now be used to predict
future performance of the same team.

The values presented here with this freely invented simple
app product are near to what had been observed in practice in
development of mobile applications.

Comparing story points with size metrics is useful on
product level but not on the sprint level. The aim of the sprints
– expressed by classical musical terms – plays a major role.
For predictions, it is safe to assume that the vision covers
about half of the product that will be implemented. Often, the
initial vision backlog contains user stories or even epics that
will become obsolete during development of the product.

COSMIC allows to precisely gauge size in sprints and bet-
ter sizes NFR that address networking and performance [13].
For technical software, developers find data movement maps
useful, see [8]. IFPUG allows for less precision due to the lack
of compliance with the VIM and the GUM; however, for
transaction-oriented applications such as Web and Mobile de-
velopment, it is good enough and eases communication with
less technical people. From the viewpoint of sizing agile, both
methods are equally useful.

The difference between size of the product and total size
of all sprints, plus the amount of enhancement works, reflects
the effort needed to find the correct requirements by the agile
team. A smaller product sometimes better reflects the true
needs of its users, and smaller products fit better in DevOps
life cycle. Thus, the enhancement effort is not lost.

Functional sizing allows to better understand the percent-
age of effort that is needed for NFR, refactoring and testing
and may vary strongly per sprint. Typically, nonfunctional ef-
forts count for more than half of the total effort; thus, the value
of functional sizing for sprint planning is limited. However,
for predicting the number of sprints needed to reach a MVP
[19], for monitoring progress, and for managing DevOps,
functional sizing is without alternative.

Moreover, COSMIC can be used for managing agile de-
velopment by the Buglione-Trudel Matrix, see [8] and [20].
Finally, COSMIC is the method of choice for sizing tests, es-
pecially for Autonomous Real-time Testing (ART) [18].
Combining ART with Agile and DevOps yields particular
benefit for large software-intense systems, such as autono-
mous vehicles, and intelligent things.

ACKNOWLEDGMENT

Thanks to the customers of Euro Project Office and
QSMA Switzerland who allowed us to monitor sprint progress
in close cooperation with the agile teams and inspired us for
this Mobile App Gedankenexperiment.

We are also grateful to the reviewers who provided us with
valuable hints how to improve this paper.

REFERENCES

[1] ISO/IEC Guide 99:2007, "International vocabulary of
metrology – Basic and general concepts and associated terms
(VIM)," TC/SC: ISO/TMBG, Geneva, Switzerland, 2007.

[2] ISO/IEC CD Guide 98-3, "Evaluation of measurement data -
Part 3: Guide to uncertainty in measurement (GUM)," TC/SC:
ISO/TMBG, Geneva, Switzerland, 2015.

[3] COSMIC Measurement Practices Committee, "COSMIC
Measurement Manual for ISO 19761 – Version 5.0 – Part 1-
3," COSMIC Measurement Practices Committee, Montréal,
2020.

[4] IFPUG Counting Practice Committee, "Function Point
Counting Practices Manual - Version 4.3.1," International
Function Point User Group (IFPUG), Princeton Junction, NJ,
2010.

[5] ISO/IEC 19761, "Software engineering - COSMIC: a
functional size measurement method," ISO/IEC JTC 1/SC 7,
Geneva, Switzerland, 2011.

[6] ISO/IEC 20926, "Software and systems engineering -
Software measurement - IFPUG functional size measurement
method," ISO/IEC JTC 1/SC 7, Geneva, Switzerland, 2017.

[7] P. Hill, Ed., Practical Software Project Estimation 3rd
Edition, New York, NY: McGraw-Hill, 2010.

[8] T. M. Fehlmann, Managing Complexity - Uncover the
Mysteries with Six Sigma Transfer Functions, Berlin,
Germany: Logos Press, 2016.

[9] T. M. Fehlmann, "When use COSMIC FFP? When use
IFPUG FPA? A Six Sigma View," in COSMIC Function
Points - Theory and Advanced Practices, R. Dumke and A.
Abran, Eds., Boca Raton, FL, CRC Press, 2011-3, pp. 260-
274.

[10] M. Rehkopf, L. Daly, C. Drumond, D. Radigan, S. Mansour
and M. Suntinger, "Atlassian Agile Coach," Atlassian
Corporation Plc, Sydney, NSW, Australia, 2020.

[11] F. Erich, C. Amrit and M. Daneva, "A Qualitative Study of
DevOps Usage in Practice," Journal of Software: Evolution
and Process, vol. 29, no. 6, June 2017.

[12] M. Cohn, Agile estimating and planning, New Jersey, NJ:
Prentice Hall, 2005.

[13] COSMIC Consortium, "Guideline on Non-Functional &
Project Requirements V1.03," November 2015. [Online].
Available: http://cosmic-sizing.org/publications/guideline-
on-non-functional-project-requirements/. [Accessed 18
November 2015].

[14] ISO/IEC 14143-1, "Information technology - Software
measurement - Functional size measurement - Part 1:
Definition of concepts," ISO/IEC JTC 1/SC 7, Geneva,
Switzerland, 2007.

[15] The SWIFT Standards Team, ISO 20022 for Dummies, John
Wiley & Sons, 2020.

[16] ISO 16355-1, "Applications of Statistical and Related
Methods to New Technology and Product Development
Process - Part 1: General Principles and Perspectives of
Quality Function Deployment (QFD), Geneva, Switzerland:
ISO TC 69/SC 8/WG 2 N 14," ISO TC 69/SC 8/WG 2 N 14,
Geneva, Switzerland, 2015.

[17] T. M. Fehlmann and E. Kranich, "Early Software Project
Estimation the Six Sigma Way," Lecture Notes in Business
Information Processing, vol. 199, pp. 193-208, 2014-2.

[18] T. M. Fehlmann, Autonomous Real-time Testing - Testing
Artificial Intelligence and Other Complex Systems, Berlin,
Germany: Logos Press, 2020.

[19] E. Ries, The Lean Startup, New York, NY: Crown Publishing
Group, 2011.

[20] T. M. Fehlmann and E. Kranich, "Managing Software
Projects by the Buglione-Trudel Matrix," in 11th European
Conference on Information Systems Management - ECISM
2017, Genova, Italy, 2017.

